ELAWARE

BIOMEDICAL ENGINEERING

MATERIALS FOR MOLECULAR, CELLULAR & TISSUE ENGINEERING

Applied biomaterials is the implementation of engineered materials for biomedical applications in the fields of biology, biomedical engineering, and human health. These materials are designed and engineered to interact with biological systems, ranging from cells to tissues to whole organisms depending on the application. Applied biomaterials play a crucial role in advancing healthcare through a multitude of applications.

COMPANY SNAPSHOT

1Drop Diagnostics 3M Healthcare Abbott Laboratories AbbVie Inc. ACell AlgiKnit Amaen Inc. **AMSilk** Arthrex AstraZeneca **BASF SE Baxter International** Baver B. Braun Medical Becton Dickinson Berkelev Advanced Biomaterials, Inc. Bioaelx **CAM Bioceramics BV** Cartesian Therapeutics Collagen Matrix, Inc. Cornina Covalon Technologies Ltd.

CRISPR Therapeutics **DuPont Industrial Biosciences Ecovative Design** Edwards Lifesciences Eli Lilly and Company Emulate Epithelix Ethicon (Johnson & Johnson) Evonik Industries AG GlaxoSmithKline Incvte Invibio Ltd. Janssen Pharmaceutical **Kerafast** Kuros BioSciences LabGenius Medtronic Merck & Co. MiMedx Group, Inc. Moderna Noble Biomaterials Nordson Corporation Novartis International AG

Nuvasive OrganoClick Organovo Orthofix OssDesian Picarro Pfizer Inc. regenHU Ltd **REVA Medical Replication Medical Inc.** Roche **RTI Surgical Holdings** Sigma-Aldrich Stryker STRM.BIO Terumo Teva Pharmaceutical Industries Thvnc W.L. Gore & Associates Wright Medical Group Xeltis AG Zimmer Biomet Holdings, Inc. Zora Biosciences

APPLICATION (PRODUCT) EXAMPLES

Artificial Organs and Tissue Engineering (skin, cornea, bladder, heart), Biofabrication (biodegradable sutures, screws), Cell-Based Therapies (CAR-T cells, pancreatic islets), Drug Delivery and Precision Medicine (drug/nucleic acid nanocarriers), Genetic Engineering (nucleic acid therapeutics), Immunoengineering (CAR-T, vaccines), Mechanobiology (artificial joints and coatings), Medical Implants (dental, orthopedic, vascular grafts), Micro- and Nanotechnology/Nanomedicine (therapeutic delivery systems), Molecular/Cellular Engineering and Regenerative Medicine (stem cell therapies), Vaccines (COVID, cancer), Wearable/Implantable Biosensors (glucose monitor, neural Implants)

RELEVANT COURSE EXAMPLES (*REQUIRED IN BME CURRICULUM)

BMEG 100	*Fundamentals in Biomedical Engineering	ELEG 447	Optical Properties of Solids
BMEG 301	*Quantitative Cellular Physiology	ELEG 450	Semiconductor Device Design & Fab
BMEG 302	*Quantitative Systems Physiology	MEEG 413	Nanomaterials and Nanotechnology
BMEG 310	*Bioengineering Mechanics I	MEEG 417	Composite Materials
BMEG 420	*Biological Transport Phenomenon	MEEG 451	Introduction to Microsystems
BMEG 445	Material-Human Body Interfaces	MEEG 453	Manufacturing Processes and Systems
BMEG 447	Immunoengineering	MEEG 455	Principles of Composites Manufacturing
BMEG 461	Cell Engineering	MEEG 484	Biomaterials and Tissue Eng App
BMEG 462	Engineering Biomed Nanostructures	MEEG 486	Cell and Tissue Transport
BMEG 463	Mechanotransduction	MSEG 402	Nanoscale Materials Laboratory
BMEG 464	Medical Device Development	MSEG 406	Corrosion and Protection
BMEG 465	Tissue Biomechanics and Modeling	MSEG 410	Exp Mechanics of Composites
CHEG 420	Biochemical Engineering	MSEG 415	Degradation and Failure of Materials
CHEM 322/325	Organic Chemistry II & Lab	MSEG 429	Characterization of Electronic Materials
CHEM 418/443	Physical Chemistry	MSEG 431	Organic Electronics: Design, Syn, App
ELEG 422	Semiconductor Materials Processing	MSEG 460	Biomaterials and Tissue Engineering
ELEG 446	Nanoelectronic Device Principles		

PATHWAY EXAMPLES

Pathways are <u>optional</u> groupings of 5 technical electives (including at least 2 BME) that demonstrate depth and focus in a particular area. Examples below are provided for reference and are not all-inclusive. Be sure to check current course offerings, approved technical electives, and pre-requisites (all subject to change).

Path 1: Applications of Biomaterials		Path 2: Fabrication & Characterization of Biomaterials	
BMEG 445	Material-Human Body Interfaces	BMEG 445	Material-Human Body Interfaces
BMEG 461	Cell Engineering	BMEG 464	Medical Device Development
BMEG 462	Engineering Biomed Nanostructures	MEEG 413	Nanomaterials and Nanotechnology
BMEG 447	Immunoengineering	MSEG 460	Biomaterials and Tissue Engineering
MEEG 484	Biomaterials and Tissue Eng App	ELEG 450	Semiconductor Device Design & Fab

Extracurricular Enhancement

Biochemical Engineering Minor

Materials Science & Engineering Minor

Nanoscale Materials Minor

- 4 + 1 MS in Biopharmaceutical Sciences
- 4 + 1 MS in Materials Science & Engineering