Biomedical Engineering Graduate Program Handbook

(Revised November 2018)

Overview

Through the Biomedical Engineering (BME) program at UD, graduate students can obtain a PhD and/or a MS. The MS and PhD programs are built on a common first year core curriculum with advanced curricula that are based on the research the student will perform for the PhD dissertation (or MS thesis, if electing that option). Due to the interdisciplinary nature of Biomedical Engineering, faculty that are affiliated with this program come from multiple colleges and departments at UD. MS and PhD students will identify a Faculty Advisor from among these faculty who will be responsible for defining the student's research responsibilities and for evaluating the student's performance. The PhD degree will be administered by the BME Program and will be awarded by the College of Engineering.

This multi-disciplinary graduate program builds upon the established biomedical research strength at the University of Delaware, largely within the College of Engineering. It offers academic rigor, as well as flexibility, to meet the needs and interests of students from different backgrounds and of their faculty advisors from different research areas.

PhD Program

The PhD program in Biomedical Engineering consists of 39 credits of graduate level course work including at least 9 credits of Doctoral Dissertation. The program allows for considerable flexibility in course selection. The PhD program also requires completion of a Teaching Aid requirement, the Qualifying Exam, the Candidacy Defense and the Doctoral Dissertation.

PhD requirements in Biomedical Engineering: 39 credits total		
5 Core courses		
Principles of Biomedical Engineering	6 credits	
(2 courses)		
Advanced Math	3 credits	
Statistics	3 credits	
Communication and Ethics	3 credits	
4 Technical electives (minimum)	12 credits	
Research	3 credits minimum	
Dissertation	9 credits minimum	
Seminar series (3 semesters)	0 credits	

The table below lists the credit requirements for a PhD degree in BME.

Course Requirements

Core courses

Core Courses (15 credits)	
Principles of Biomedical Engineering	BMEG 605 Principles of Biomedical Engineering I: Molecular and cellular systems (allow BISC 605 Advanced Mammalian Physiology as a substitute)
(6 credits)	BMEG 606 Principles of Biomedical Engineering II: Tissue and organ systems (allow BISC 606 Advanced Mammalian Physiology II as a substitute)
Advanced Math	ELEG 671 Mathematical Physiology
(3 credits)	
Statistics	BISC 643 Biological data analysis
(3 credits)	CHEG 604 Probability and Statistics for Engineering Problem
Choose 1	Solving
Communication and Ethics	BMEG 801 Communication and Ethics in Biomedical Engineering
(3 credits)	

Other classes may be substituted for the approved core courses at the recommendation of the faculty advisor with the approval of the graduate committee.

Technical Electives

Technical Electives can be chosen from courses offered across engineering departments.

Technical Elective Courses (12 credits minimum, choose 4 minimum)	
BISC 602	Molecular Biology of Animal Cells
BISC 612	Advanced Cell Biology
BISC 625	Cancer Biology
BISC 626	Advanced Neuroanatomy
BISC 627	Advanced Neurophysiology
BISC 639	Developmental Neurobiology
BMEG 610	Tissue Biomechanics & Modeling
BMEG 640	Structural Attachments in Biology
BMEG 641	Biomechatronics
BMEG 662	Engineering Biomedical Nanostructures
BMEG 663	Mechanotransduction
BMEG 665	Tissue Biomechanics and Modeling
BMEG 679	Introduction to Medical Imaging Systems
BMEG 695	Computational Systems Biology
CHEG 604	Probability and Statistics for Engineering Problem Solving
CHEG 620	Biochemical Engineering
CHEG 621	Metabolic Engineering
CHEG/CHEM 649	Molecular Biophysics
CHEG 650	Biomedical Engineering
CHEG 801	Process Control and Dynamics
CHEG 825	Chemical Engineering Thermodynamics
CHEG 827	Chemical Engineering Problems
CHEG 828	Statistical Thermodynamics
CHEG 842	Selected Topics in Biochemical Engineering
CHEG 845	Advanced Transport Phenomena
CHEM 641	Biochemistry
CHEM 642	Biochemistry
CHEM 643	Intermediary Metabolism
CHEM 645	Protein Structure and Function
CHEM 646	DNA-Protein Interactions
CHEM 647	Biochemical Evolution
CHEM 648	Membrane Biochemistry
CISC 642	Intro to Computer Vision

CISC 681	Artificial Intelligence
CISC/BINF 689	Topics: Artificial Intelligence
CISC/BINF 849	Advanced Topics in Computer Applications
CISC 852	Computer Network Performance
CISC 887	Internet Information Gathering
CIEG 601	Introduction to the finite element method
ELEG 630	Information theory
ELEG 631	Digital signal processing
ELEG 636	Statistical signal processing
ELEG 671	Mathematical Physiology
ELEG 675	Image processing with biomedical applications
ELEG 679	Intro to medical imaging systems
ELEG 680	Immunology for engineers
ELEG 801	Advanced topics in biomedical engineering
MATH 529	Fundamentals of Optimization
MATH 611	Introduction to Numerical Discretization
MATH 617	Introductions to Applied Mathematics II
MATH 630	Probability Theory and Applications
MATH 660	Intro to Systems Biology
MEEG 612	Biomechanics of human movement
MEEG 624	Control of dynamic systems
MEEG 682	Clinical biomechanics
MEEG 683	Orthopedic biomechanics
MEEG 684	Biomaterials and tissue engineering
MEEG 685	Control of human movement
MEEG 686	Cell and tissue transport
MEEG 862	Advanced Engineering Analysis
MSEG/CHEG 601	Structure and Properties of Polymer Materials
MSEG 625	Entrepreneurship and risk: meeting the challenges
MSEG 630/CHEG 600	Introduction to Polymer Science and Engineering
MSEG 633/833	Polymer Synthesis and Characterization Laboratory
MSEG 635/835	Principles of Polymer Physics
MSEG 660	Biomaterials and Tissue engineering
MSEG 803	Equilibria in Materials Systems
MSEG 804	Kinetics in Materials Systems
MSEG 817	Composite Materials
MSEG/CHEG 823	TEM in Materials Science
MSEG 832	Principles of Polymerization
STAT 609	Regression and Experimental Design

Courses not on the above Technical Elective list can be substituted with permission of the Faculty Advisor and the Graduate Director. Check for updated lists periodically. For descriptions of technical electives, please refer to the UD Course Catalog (at http://academiccatalog.udel.edu/).

Students with Previous Graduate Work

BME may waive the requirement for up to 18 credit hours of course work for students entering with a Master's Degree or credits for graduate course work performed at another recognized graduate school. Waivers will only be granted for courses that cover subjects eligible for credit toward a PhD in Biomedical Engineering from the University of Delaware. Requests for a course waiver must be initiated by the student before the beginning of their third semester at UD. Waivers must be approved by the Faculty Advisor and the BME Graduate Director and will be contingent on the student's demonstration of satisfactory performance in course work taken at UD.

Other Course Requirements

PhD students must complete 27 credit hours of course work (described above), plus at least 3 credit hours of research (BMEG 868) and 9 credit hours of dissertation research (BMEG 969).

Seminar Series

Biomedical engineering is an emerging and rapidly expanding field where engineering and biological disciplines converge. To keep up to date with the wide variety of research encompassed by this field, students are required to attend 75% of the regularly scheduled departmental seminars.

Choosing a Faculty Advisor

Students will be matched to a Faculty Advisor from a list of Biomedical Engineering-affiliated faculty members participating in the degree program. For the first 2 months following fall matriculation, the student will be advised by the Graduate Director (unless a direct match to an advisor is made during the admission process). Lab rotations will be assigned by the graduate committee during matriculation. By Monday before Thanksgiving, students must submit a ranked list of at least 2 potential advisors. Advisors also submit a ranked list of students (blind to student ranking). The graduate committee will match the student to a Faculty Advisor within two weeks of the end of rotations.

The Faculty Advisor will be the primary contact of the student for questions and advice on his/her dissertation research throughout the remainder of the program. The student will develop a plan of study for the program with the Faculty Advisor by the end of the second semester of their first year. Any changes to a student's program of study must be approved by the Faculty Advisor and the BME Graduate Director.

Candidacy Requirements

To qualify to be a PhD candidate, students must complete the following:

- a. Complete a one semester Teaching Aid Requirement.
- b. Pass the **Qualifying Exam**.
- c. Establish a **Dissertation Committee**.
- d. Complete all **coursework**.

Teaching Aid Requirement

The ability to communicate ideas, concepts, and factual information is an essential skill for all PhD graduates, even those who have no interest in an academic position. In recognition of this, all PhD students are required to fulfill a Teaching Aid Requirement for 1 semester that consists of serving as a Teaching Aid. Note that this is different from the Teaching Assistantships offered as financial aid (described in **Financial Aid** section). While fulfilling this Teaching Aid Requirement, students are expected to continue being actively involved in their research.

The responsibilities of the Teaching Aid Requirement will be defined by the course instructor and should not exceed approximately 10 hours per week. In general, the PhD student should not merely be assigned grading responsibilities. He/she should have an opportunity to plan and deliver lectures, lead discussion sections and lead laboratory exercises. Direct interaction with course students is highly encouraged.

The University requires that all first time Teaching Aids take a TA orientation class offered by the Center for Teaching and Learning. International students must also enroll in the ELIITA (English Language Institute International Teaching Assistant) program before performing their teaching requirement.

Although the exact timing of these appointments is flexible, it is highly desirable to complete all teaching responsibilities by the end of the 2nd year, although they can be extended to the 3rd year. The BME Graduate Committee assigns these positions in November (for the upcoming spring semester) and in May (for the following fall). Students are encouraged to submit their preferences for specific positions early to facilitate the process. Although every effort will be made to satisfy these requests, students should recognize that this is not always possible.

Qualifying Exam

The Qualifying Exam must be taken in the summer after the first year (and after completion of at least 5 approved courses with a cumulative GPA of 3.00 or better). For students with non-fall matriculation or part-time study, the timing of this exam will be set based on course completion and approval by the Graduate Director.

The purpose of the Qualifying Exam is to evaluate the preparation of the student in the areas of background knowledge, methods and techniques, critical thinking, and oral and written scientific communication, and to develop a study and mentoring plan to address any shortcomings in this preparation. These criteria will be evaluated through both a written exam and an oral exam.

Written Exam

The written exam requires the student to prepare an 5-7 page document, following standard NIH grant formatting rules, consisting of a literature review establishing the background and significance of their proposed area of research, a summary of important methods and measurements, together with their strengths and weaknesses, and identification of at least one important gap in the current knowledge that could be addressed through their research, with a separate Works Cited section (no page limit). Correct citation style, conforming to the NIH SF424 guide requirements and the standards of the student's field, should be used throughout.

This document can be considered to be a draft of the introduction, background and significance, and methods sections of the student's future dissertation and of papers anticipated to arise from their dissertation research. Primary work on this document will occur during the month of July following the student's first year, and the student must submit the document to the Graduate Director in PDF format by August 1. The student will still be expected to participate in research activities during this month.

The student may consult their advisor, other faculty members, and other students regarding scientific questions during the preparation of this work. The written exam should be the student's original and independent work. Any text or figures used from another source (including previously published works by the student) must be properly cited. Failure to do so would constitute plagiarism.

The written exam will be evaluated by a committee of 3 faculty members chosen by the BME graduate committee, including the student's advisor and two other faculty members, one of which must be outside the primary area of the student's research. These committee members will evaluate the written exam to determine (1) whether the student demonstrates an acceptable knowledge of the scientific background and techniques relevant to their topic, and (2) whether the student demonstrates written scientific communication skills expected of a student completing the first year of a Biomedical Engineering Ph.D. program.

The committee may provide the student with informal written feedback on the written exam prior to the oral exam date.

Oral Exam

After the written exam has been evaluated, a 75-minute oral exam will be scheduled with the same committee that evaluated the written proposal. The student should prepare a 15-minute oral presentation based on their written exam. Following the presentation, there will be one hour for questions, which will be divided between Q&A relating to the written exam and questions on general biomedical engineering knowledge based on the student's completed core and elective courses.

Possible Outcomes

The committee will submit a recommendation to the graduate committee that the student either Pass or Fail the Qualifying Exam. A decision of Pass means the committee feels that the student's preparation is adequate such that, if suggested additional coursework and mentoring is completed, the student will be able to be successful in independent dissertation-level research. If the committee recommends the student Pass, they should also prepare a proposed study and mentoring plan to address any identified areas of weakness or insufficient preparation. A decision of Fail means the committee feels that the areas of weakness and insufficient preparation are significant enough that the student will not be able to be successful in independent dissertation-level research. These recommendations will be reviewed by the Graduate Committee, who will make final recommendations to the BME Faculty. The Graduate Director will communicate the decision to the student, and provide and retain a written copy of the study and mentoring plan.

Progress made on the study and mentoring plan shall be documented on subsequent Annual Progress Reports, or earlier if specified in the plan. Inadequate progress in the study and mentoring plan recommended by the committee may be grounds for dis-enrollment from the PhD program. If the student Fails, he/she will be dis-enrolled from the PhD program, but may continue in the MS program if they meet all requirements.

Dissertation Committee

As soon as possible, but no more than 1 year after passing the Qualifying Exam, the student must establish a Dissertation Committee. The Dissertation Committee is selected by the Faculty Advisor and the student, and must have a minimum of 4 members including the advisor and at least 3 additional faculty. 3 members must have an appointment in BME (Primary, Joint, or Affiliated), at least one member must hold a Primary or Voting Joint appointment in BME, and 1 must be from outside the primary research area of the dissertation topic. 3 members must be from the University of Delaware. The student must submit a 1-2 page research plan approved by the student's proposed research area including major questions to be addressed, a brief summary of research accomplishments so far, one paragraph justifying the committee composition, and a preliminary timeline for the completion of the degree. The Graduate Director must approve the committee, chair, and research plan, and any subsequent changes in committee members.

Sustaining Status

Once a student has completed all coursework required for the BME PhD degree, completed the Teaching Aid requirement, passed the Qualifying Exam, and established a Dissertation Committee, they will be considered a PhD Candidate eligible for sustaining status by the BME department. Once all these requirements are met, the student must submit a Candidacy Form to the Office of Graduate and Professional Education (http://www.udel.edu/gradoffice/forms/candidacyform.pdf).

Dissertation Proposal

The Dissertation Proposal requires a written proposal outlining the plan of research for the PhD and an oral presentation and defense of this proposal to the Dissertation Committee. The written proposal will follow a NIH R01 format, with a page limit of 15 pages. A curriculum vita, Progress Report Form (<u>http://www.bme.udel.edu/wp-content/uploads/2016/09/PhD-progress-report-FF-5.24.2016-1vuoudy.pdf</u>), and a graduate-level transcript should also be included. All materials should be distributed to the Dissertation Committee at least 2 weeks before the oral proposal. The defense will include a 30 min presentation by the student, followed by a 60 min

Q&A discussion. The student must complete the Dissertation Proposal within 2 years of the Qualifying Exam or must petition the Graduate Director for an extension.

Completing the PhD

To complete the PhD, students must pass a Dissertation Exam. This exam involves approval of the written dissertation and an oral defense of the dissertation. The written dissertation must be submitted to his/her Dissertation Committee at least 2 weeks before the defense. The oral presentation will be open to the public and will last ~45 min. After questions from the public not to exceed 15 minutes, a closed Q&A session with the Dissertation Committee of 30-60 minutes will follow. The student will be responsible for making corrections to the dissertation document and for meeting all Graduate School deadlines for submission. Student must complete the Dissertation Exam within 5 years of the Qualifying Exam (6 years after matriculation) or must petition the Graduate Director for an extension.

MS Program

The MS program in Biomedical Engineering consists of 30 credits of graduate level course work, including 6 credits of Masters Thesis if electing the Thesis option. The program allows for considerable flexibility in course selection. The MS program with thesis option also requires completion of an approved Masters Thesis.

MS requirements in Biomedical Engineering (Thesis option): 30 credits total		
5 Core courses		
Principles of Biomedical Engineering	6 credits	
(2 courses)		
Advanced Math	3 credits	
Statistics	3 credits	
Communication and Ethics	3 credits	
3 Technical electives (minimum)	9 credits	
Thesis	6 credits	

The tables below lists the credit requirements for a MS degree in BME.

MS requirements in Biomedical Engineering (non-Thesis option): 30 credits total		
5 Core courses		
Principles of Biomedical Engineering	6 credits	
(2 courses)		
Advanced Math	3 credits	
Statistics	3 credits	
Communication and Ethics	3 credits	
5 Technical electives (minimum)	15 credits	

Course Requirements

Core courses

Core Courses (15 credits)		
Principles of Biomedical Engineering	BMEG 605 Principles of Biomedical Engineering I: Molecular and cellular systems (allow BISC 605 Advanced Mammalian Physiology as a substitute)	
(6 credits)	BMEG 606 Principles of Biomedical Engineering II: Tissue and organ systems (allow BISC 606 Advanced Mammalian Physiology II as a substitute)	
Advanced Math	ELEG 671 Mathematical Physiology	
(3 credits)		
Choose 1		
Statistics	BISC 643 Biological data analysis	
(3 credits)	CHEG 604 Probability and Statistics for Engineering Problem	
Choose 1	Solving	
Communication and Ethics	BMEG 801 Communication and Ethics in Biomedical Engineering	
(3 credits)		

Other classes may be substituted for the approved core courses at the recommendation of the faculty advisor with the approval of the graduate committee.

Technical Electives

Technical Electives can be chosen from courses offered across engineering departments. Classes may be chosen from the list approved for the PhD program as above. Courses not on the above Technical Elective list can be substituted with permission of the Faculty Advisor and the Graduate Director. Students electing the non-thesis option may use up to 6 credits of BMEG 868 (Research) toward the 15 unit technical elective requirement. Check for updated lists periodically. For descriptions of technical electives, please refer to the UD Course Catalog (at http://academiccatalog.udel.edu/).

Choosing a Faculty Advisor

If a student is pursuing a non-thesis option MS, the student will be advised by the Graduate Director, or a BME-affiliated faculty member appointed by the graduate director. If a student is pursuing a thesis-option MS, the student will be advised by the BME-affiliated faculty member most directly involved in supervising the thesis research. Students are responsible for identifying

potential faculty advisors by meeting with faculty, attending faculty presentations, and attending research group meetings. With the consent of both student and advisor, the Graduate Director will match the student to a Faculty Advisor before work is begun on the thesis research.

The Faculty Advisor will be the primary contact of the student for questions and advice on his/her thesis research throughout the remainder of the program. The student will develop a plan of study for the program with the Faculty Advisor by the end of the second semester of their first year. Any changes to a student's program of study must be approved by the Faculty Advisor and the BME Graduate Director.

Thesis Committee

Before beginning work on the thesis research, the student must establish a Thesis Committee. The Thesis Committee is selected by the Faculty Advisor and the student, and must have a minimum of 3 members including the advisor and at least 2 additional faculty. 2 members must have an appointment in BME (Primary, Joint, or Affiliated), at least one member must hold a Primary or Voting Joint appointment in BME. The student must submit a 1-2 page research plan approved by the committee to the graduate director. The research plan should contain a brief description of the student's proposed research area including major questions to be addressed, a brief summary of research accomplishments so far, one paragraph justifying the committee composition, and a preliminary timeline for the completion of the degree. The Graduate Director must approve the committee, chair, and research plan, and any subsequent changes in committee members.

Thesis Submission

To complete the MS with thesis option, students must submit a correctly formatted thesis meeting the University formatting rules, presenting novel, publishable research that has been reviewed and approved by the student's thesis committee. The thesis committee may, at their discretion, require a formal presentation of the thesis as a condition of approval. The student will be responsible for making corrections to the thesis document and for meeting all Graduate School deadlines for submission. Student must complete the thesis within 5 years of matriculation or must petition the Graduate Director for an extension.

Completing the MS Degree

Once all requirements have been met (including the approved thesis for thesis-option MS students), the student must submit an Application for Advanced Degree to the graduate office.

Satisfactory progress

Academic Load

Full-time students are expected to complete the PhD program in 4-6 years, or the MS program in 2-3 years. The program may be completed over a longer time frame for part-time students. Students must be enrolled in at least 9 credit hours or in sustaining credit to be considered full-time students. Those enrolled for fewer than 9 credit hours are considered part-time students, although students holding assistantships are considered full-time with six credits. Students are expected to take 9 credit hours of course work for the first semester in order to be funded. All

graduate students are expected to register for research credits during the summer term but not the winter term. Generally, a maximum load is 12 graduate credit hours in spring and fall; however, additional credit hours may be taken with the approval of the student's adviser and the Office of Graduate and Professional Education.

Annual Progress Report

The student's progress toward his/her PhD will be monitored annually by the BME Graduate Committee. Before July 1st each year, the student must submit a Progress Report Form to the Graduate Director that is signed by the Faculty Advisor. This form (see **Forms** section) includes a checklist of course requirements, research accomplishments, self-assessment, advisor feedback, and verifications that annual Dissertation Committee meetings are occurring.

Grade Requirements

Only graduate courses completed with a grade of B- or higher will count towards the requirements of the BME program. Students must maintain at least a 3.0 cumulative grade point average in the courses in the curriculum to receive the degree. If student does not achieve a B- or higher in a core course, he/she must retake the course (or any of the optional core courses in that category), and if the retake is below a B-, the student will be recommended for dismissal. If student achieves lower than a B- on an elective course, he/she can retake the course or replace it with another elective course. University of Delaware has a No Replacement policy so both grades of a repeated course are included in the cumulative GPA and the University requires that this GPA must be over 3.0. However, the cumulative GPA for the courses that lead to the PhD degree only use the higher grade of the repeated course.

Consequences of Unsatisfactory Progress

The BME Graduate Committee will meet at least once each year to evaluate each student's progress. To monitor this progress, the student must annually submit a Progress Report Form (see **Forms** section) to the BME Graduate Director before July 1. If the student does not complete a Progress Report, fall registration is cancelled and funding is stopped until it has been completed. If the student is failing to make satisfactory progress towards a degree, the committee will recommend suitable action to the BME Graduate Director. Possible actions include (but are not limited to): (i) requirement for additional courses, (ii) suspension of financial support, and (iii) recommendation for dismissal.

Standards of Student Conduct

All graduate students are subject to University of Delaware regulations regarding academic honesty. Violations of the UD regulations regarding academic honesty or other forms of gross misconduct may result in immediate dismissal from the Program.

Dismissal

The procedures for dismissal as detailed in the University Catalog will be followed. Briefly, the BME Graduate Committee will report its recommendation and reason for dismissal to the BME

Graduate Director. He/she will make a recommendation to the Office of Graduate Studies, who will decide whether to dismiss the student. The student may appeal this decision to the Office of Graduate Studies, following the procedure given in the University Catalog.

Graduate Student Grievance Procedure

Students who feel that they have been graded inappropriately or have received what they perceive as an unfair evaluation by a faculty member may file grievances in accordance with University of Delaware policies. Students are encouraged to contact the BME Graduate Director and/or the Director of the BME Program prior to filing a formal grievance in an effort to resolve the situation informally.

Attendance at Conferences and Professional Meetings

The BME program encourages students to attend conferences and professional meetings. They provide opportunities to meet future employers and colleagues, and can offer specialized training beyond course work.

Financial Aid

Financial Awards

Financial assistance is awarded on a competitive basis to the pool of admitted applicants. The University of Delaware's policies apply to all forms of financial aid. Please refer to the University Policies for Graduate Student Assistantships and Fellowships.

The majority of students in the BME PhD program will be supported on research contracts and grants obtained by their Faculty Advisors. Students pursuing a terminal MS degree are not generally funded by the department, but may be supported on research contracts and grants as deemed appropriate by the PI on those projects. MS students may also be appointed as Teaching Assistants at the discretion of the graduate committee chair. PhD Students on projects without external funding will be provided support (assuming that their progress is satisfactory) through the use of either other program funds or by appointment as a Teaching Assistant. No student will be supported by departmental funds for more than 2 semesters; funds beyond such a commitment must be provided by the Faculty Advisor or by appointment as a Teaching Assistant. In general, funding is not guaranteed beyond five years.

Students in the Biomedical Engineering program may be provided Graduate Assistantships:

Research Assistants (RAs) are generally funded by research grants and contracts provided by external funding agencies. Students should be supported as an RA through their Faculty Advisor's research funds once they are matched (usually following the first full semester of the student's matriculating year). RAships provide full tuition and a stipend.

Teaching Assistants (TAs) are offered for graduate students to perform teaching and other instructional activities. Note that this is different from the Teaching Aid Requirement described in the **Candidacy Requirements** section. The amount of service may vary from week to week but the average is usually expected to be 20 hours per week. A TA-ship provides full tuition and a stipend. In accordance with University of Delaware regulations, TAs must fulfill the

requirements detailed for the Teaching Aid Requirement in the **Candidacy Requirements** section above in order to qualify for this type of assistantships.

Continuation of Financial Aid

Students who are awarded financial aid must maintain satisfactory academic progress with satisfactory performance of assistantship duties (see below). Satisfactory academic progress includes maintaining full-time status and maintaining the grade requirements detailed in the **Satisfactory Progress** section.

The Faculty Advisor will establish the Research Assistant (RA) responsibilities and performance standards. In the event of an unsatisfactory performance by an RA, the Faculty Advisor will notify the BME Graduate Director and the student of the problem in writing. The Advisor will give the student a performance appraisal that lists the specific areas that need improvement and a timeline by which to rectify the situation (typically 1 to 3 months) before the assistantship is terminated.

The director of the course in which the student teaches will establish the Teaching Assistant (TA) responsibilities and performance standards. In the event of an unsatisfactory performance by a TA, the course director will notify the student and the BME Graduate Director in writing detailing the specific areas that need improvement. If the student does not rectify the situation (typically within 2-4 weeks), the BME Graduate Director may recommend termination of the assistantship.

BME people

BME Graduate Committee

This committee consists of at least 4 BME-affiliated faculty. It is responsible for 1) reviewing applications, 2) recommending student visits and admissions, 3) matching students to an advisor, 4) developing and approving the curriculum, 5) reviewing annual Progress Reports, 6) assigning Qualifying Exam committee, 7) reviewing and approving Dissertation Committee members and chair, 8) dealing with petitions for course substitutions, and 9) dealing with petitions for the extension of Candidacy and Dissertation Defenses.

BME Graduate Director

The Associate Director for Graduate Studies in BME chairs the BME Graduate Committee and is called the BME Graduate Director. He/she will be responsible for the overall implementation, quality and progress of the degree program, advised by the BME Graduate Committee. He/she will also act as advisor to the student during the first semester until the student has a Faculty Advisor. At the end of the PhD program, he/she will approve the application for the degree upon verifying that the student has successfully completed the requirements.

Forms

All forms can be accessed at: http://bme.udel.edu/graduate-program-forms/